47 research outputs found

    Linear lambda terms as invariants of rooted trivalent maps

    Full text link
    The main aim of the article is to give a simple and conceptual account for the correspondence (originally described by Bodini, Gardy, and Jacquot) between α\alpha-equivalence classes of closed linear lambda terms and isomorphism classes of rooted trivalent maps on compact oriented surfaces without boundary, as an instance of a more general correspondence between linear lambda terms with a context of free variables and rooted trivalent maps with a boundary of free edges. We begin by recalling a familiar diagrammatic representation for linear lambda terms, while at the same time explaining how such diagrams may be read formally as a notation for endomorphisms of a reflexive object in a symmetric monoidal closed (bi)category. From there, the "easy" direction of the correspondence is a simple forgetful operation which erases annotations on the diagram of a linear lambda term to produce a rooted trivalent map. The other direction views linear lambda terms as complete invariants of their underlying rooted trivalent maps, reconstructing the missing information through a Tutte-style topological recurrence on maps with free edges. As an application in combinatorics, we use this analysis to enumerate bridgeless rooted trivalent maps as linear lambda terms containing no closed proper subterms, and conclude by giving a natural reformulation of the Four Color Theorem as a statement about typing in lambda calculus.Comment: accepted author manuscript, posted six months after publicatio

    A correspondence between rooted planar maps and normal planar lambda terms

    Get PDF
    A rooted planar map is a connected graph embedded in the 2-sphere, with one edge marked and assigned an orientation. A term of the pure lambda calculus is said to be linear if every variable is used exactly once, normal if it contains no beta-redexes, and planar if it is linear and the use of variables moreover follows a deterministic stack discipline. We begin by showing that the sequence counting normal planar lambda terms by a natural notion of size coincides with the sequence (originally computed by Tutte) counting rooted planar maps by number of edges. Next, we explain how to apply the machinery of string diagrams to derive a graphical language for normal planar lambda terms, extracted from the semantics of linear lambda calculus in symmetric monoidal closed categories equipped with a linear reflexive object or a linear reflexive pair. Finally, our main result is a size-preserving bijection between rooted planar maps and normal planar lambda terms, which we establish by explaining how Tutte decomposition of rooted planar maps (into vertex maps, maps with an isthmic root, and maps with a non-isthmic root) may be naturally replayed in linear lambda calculus, as certain surgeries on the string diagrams of normal planar lambda terms.Comment: Corrected title field in metadat

    A Sequent Calculus for a Semi-Associative Law

    Get PDF
    We introduce a sequent calculus with a simple restriction of Lambek\u27s product rules that precisely captures the classical Tamari order, i.e., the partial order on fully-bracketed words (equivalently, binary trees) induced by a semi-associative law (equivalently, tree rotation). We establish a focusing property for this sequent calculus (a strengthening of cut-elimination), which yields the following coherence theorem: every valid entailment in the Tamari order has exactly one focused derivation. One combinatorial application of this coherence theorem is a new proof of the Tutte-Chapoton formula for the number of intervals in the Tamari lattice Y_n. Elsewhere, we have also used the sequent calculus and the coherence theorem to build a surprising bijection between intervals of the Tamari order and a natural fragment of lambda calculus, consisting of the beta-normal planar lambda terms with no closed proper subterms

    Convolution Products on Double Categories and Categorification of Rule Algebras

    Get PDF
    Motivated by compositional categorical rewriting theory, we introduce a convolution product over presheaves of double categories which generalizes the usual Day tensor product of presheaves of monoidal categories. One interesting aspect of the construction is that this convolution product is in general only oplax associative. For that reason, we identify several classes of double categories for which the convolution product is not just oplax associative, but fully associative. This includes in particular framed bicategories on the one hand, and double categories of compositional rewriting theories on the other. For the latter, we establish a formula which justifies the view that the convolution product categorifies the rule algebra product

    An Isbell Duality Theorem for Type Refinement Systems

    Get PDF

    A correspondence between rooted planar maps and normal planar lambda terms

    Full text link
    corecore